
Pessimal Algorithms

and Simplexity Analysis

Andrei Broder and Jorge Stolfi

DEC Systems Resear
h Center

130 Lytton Avenue, Palo Alto CA 94301

Abstra
t: The twin dis
iplines of Pessimal Algorithm Design and Simplexity Analysis

are introdu
ed and illustrated by means of representative problems.

1. Introdu
tion

Consider the following problem: we are given a table of n integer keys A

1

; A

2

; . . ., A

n

and a query integer X . We want to lo
ate X in the table, but we are in no parti
ular hurry to

su

eed; in fa
t, we would like to delay su

ess as mu
h as possible.

We might
onsider using the trivial algorithm, namely test X against A

1

; A

2

, et
. in

turn. However, it might happen that X = A

1

, in whi
h
ase the algorithm would terminate right

away. This shows the na��ve algorithm has O(1) best-
ase running time. The question is,
an we

do better, that is, worse?

Of
ourse, we
an get very slow algorithms by adding spurious loops before the �rst test

of X against the A

i

. However, su
h easy solutions are una

eptable, partly be
ause any fool
an

see that the algorithm is just wasting time (whi
h would be very embarrassing to its author), but

mostly be
ause we need something to �ll the rest of this paper with. Therefore, we must look for

an algorithm that does indeed progress steadily towards its stated goal even though it may have

very little enthusiasm in (or even a manifest aversion to) a
tually getting there.

We
an get an algorithm that satis�es this
riterion and is mu
h better (that is, worse)

than the naive one if we keep the table A sorted in as
ending order. Then we
an use the relu
tant

sear
h pro
edure below:

pro
edure resear
h (X, i, j: integer): integer =

f Result is the index k su
h that A

k

= X, or �1 if no su
h k exists. g

if i > j then return �1 fi

if i = j then if X = A

i

then return i else return �1 fi

m b

i+ j

2

if X � A

m

then

k resear
h (X, m+ 1, j)

if k = �1 then return resear
h(X, i, m) else return k fi

else

k resear
h (X, i, m)

if k = �1 then return resear
h (X, m+ 1, j) else return k fi

fi

erude
orp

[pessimal.tex edited by stol� on Tue May 20 02:05:42 1986 ℄

Pessimal Algorithms 2

The number of probes performed by this algorithm is independent of X and the A

i

, and

is given by the re
urren
e

T (n) =

(

1 + T (b

n

2

) + T (d

n

2

e) if n > 1

1 if n = 1

0 if n = 0

whi
h has the solution

y

T (n) = �

�

n+

n

1 + n

log(n+ 1)

3:14159+

logn log logn

�

:

(The proof will be given in a future report.) This represents a desimprovement by a fa
tor of n

over the naive algorithm. Observe that the la
k of enthusiasm of the relu
tant sear
h algorithm

is not at all evident from its behavior, sin
e it performs a X = A

i

test every O(1) operations,

never repeats a test, and stops as soon as it �nds the answer. Few sear
h algorithms, honest or

not,
an mat
h this performan
e.

2. Generalizations

The resear
h pro
edure is a prototypi
al example of an entirely new bran
h of Comput-

er S
ien
e, the design and analysis of relu
tant algorithms. Intuitively, a relu
tant algorithm for a

problem P is one whi
h wastes time in a way that is suÆ
iently
ontrived to fool a naive observer.

We
an make this
on
ept mathemati
ally pre
ise by saying that A is a relu
tant algorithm for

P i�

(9W)

^

o2N

w(A; t;W) ^ F

�

(W; o); (1)

where N is the set of all naive observers, t is time, w(A; t;W) is the predi
ate \A wastes t in the

way W", and F

�

(W; o) is the boolean test \W is suÆ
iently
ontrived to fool o".

In the study of relu
tant algorithms, the performan
e of an algorithm A is better ex-

pressed by its ineÆ
ien
y or best-
ase time, the minimum (as a fun
tion of n) over all inputs of

size n of the running time of A. The simplexity of a problem is the maximum ineÆ
ien
y among

the algorithms that solve P . An algorithm is said to be pessimal for a problem P if the best-
ase

ineÆ
ien
y of A is asymptoti
ally equal to the simplexity of P .

Relu
tant algorithms have plenty of important pra
ti
al appli
ations. For example, the

relu
tant sear
h algorithm is parti
ularly appli
able to the
ase of real keys (real not in the

mathemati
al sense, but rather in the sense that they
an be used to open doors and drawers).

The relu
tant sear
h algorithm is the only one known so far that a

urately emulates the behavior

of bundles of su
h keys [SB℄.

3. Path problems in pleasant graphs

Table sear
h
an be viewed as a spe
ial
ase of the following more general problem. We

are given a \maze", i.e. an undire
ted graph G with n nodes, and an \entry" node u in it. Our

task is to �nd a path from u to a spe
i�ed \exit" node v, by walking on the maze one edge at at

time. In the spirit of
lassi
al Analysis of Algorithms, we would immediately think of using one

of the eÆ
ient shortest-path or graph traversal methods. However, suppose the maze is a
tually

quite agreeable, so mu
h that we wouldn't mind spending a few extra
y
les in the sear
h for

v, in fa
t we vaguely hope, nay, de
idedly wish, that the sear
h will take as long as possible,

and even though our sense of duty prevents us from giving up the sear
h altogether, we are not

that insensitive to the primeval ne
essities of our human nature, and besides what is wrong with

taking a more relaxed attitude to the problem, as long as we do what we are supposed to do, sin
e

y

We use \log" for logarithms in base two, and \ln" for natural logarithms.

Pessimal Algorithms 3

we have always been told that haste makes waste, and no one needs to be perfe
t anyway, and

so forth. With these assumptions, the problem falls squarely within the domain of our theory.

This problem has been extensively studied by graph theorists, who
all it the sloppiest

path problem. The important bran
h of operations resear
h that goes by the name of anemi

programming is entirely devoted to the study of ineÆ
ient methods for solving this problem.

What do we know about its simplexity? Early on it was shown by R. Wagner [Wa℄ that if we

have no information about the lo
ation of v, the best-
ase running time may be as low as O(1):

at every single step | even the very �rst one | we risk stumbling upon v and falling out of the

maze, no matter how mu
h we would like to avoid it. However, H. Homer [Ho℄ showed that, if

the graph is embedded in the plane (or in a
at globe), and we are given an ora
le that reveals

the general dire
tion of our goal, it is possible to delay getting there until after most or all of

the graph has been traversed. In fa
t, in this situation the delay is limited not by the inherent

simplexity of the problem, but by its monotoni
ity.

y

Homer's algorithm has
(n) ineÆ
ien
y,

and this is a lower bound for the simplexity of the sloppiest path problem.

The relu
tant sear
h method and Homer's sloppiest-path algorithm are both based on

the same idea, variously known as the method of reverse gradient or method of feeblest des
ent.

We mention in passing that another important paradigm for relu
tant algorithm design was

des
ribed by Homer in the same paper. It was given by its inventor the
olorful name of Penelope's

stratagem, and relies in the use of a for loop whose step os
illates between positive and negative

values at ea
h iteration. Unfortunately, this te
hnique (whi
h is presently
alled the ba
ktra
k

method), has be
ome so well-known that even naive observers
an spot it at �rst sight, and is

now of histori
al interest only.

4. Ba
kwards-�rst sear
h

A somewhat similar problem is that of enumerating all n verti
es of a
onne
ted graph

G in a systemati
 fashion. This problem has been extensively studied in the framework of
lassi
al

theory of algorithms, and it is usually solved by the well-known depth-�rst [V1℄ or breadth-�rst

[V2℄ algorithms, whi
h exhibit
(n) best-
ase time.

This was for a long time thought to be an upper bound to the simplexity of the problem,

but on O
tober 4, 1984 at 2:17 p.m. the relu
tant algorithmi
s
ommunity was shaken by the

dis
overy of a sear
h strategy exhibiting
(n

2

) ineÆ
ien
y for an important
lass of graphs. The

ba
kwards �rst sear
hing method, as it was
alled by its inventor, is des
ribed below. Like its

prede
essors, it is best thought of as a method for assigning to the verti
es v

1

; v

2

; . . . ; v

n

of G

the integer labels �(v

1

); �(v

2

); . . . ; �(v

n

), in the range 1 to n. The algorithm is expressed by the

re
ursive pro
edure bwfs below. The pro
edure assumes all labels �(v) are initially zero; the

re
ursion is started by the
all bwfs(v

1

,1).

pro
edure bwfs (v: vertex, i: integer) =

�(v) i

for ea
h neighbor u of v do

if 0 < �(u) < i then bwfs (u, i) fi

rof

for ea
h neighbor u of v do

if �(u) = 0 then bwfs (u, i+ 1) fi

rof

erude
orp

We leave to the reader as an enlightening exer
ise the task of proving the
orre
tness of

this algorithm, and establishing that its ineÆ
ien
y is indeed �(n

2

) for straight line graphs. Its

y

Also known as boredom.

Pessimal Algorithms 4

ineÆ
ien
y on general graphs is an open problem, but it seems that it never does worse (that is,

better) than O(n

p

n).

The ba
kwards �rst numbering of the verti
es of a graph is by de�nition the labels �(v)

assigned by this algorithm. Like the depth-�rst and breadth-�rst numberings, this one has several

interesting properties. Due to la
k of spa
e, we will mention only a
ouple of them here. If the edges

are arbitrarily oriented so as to produ
e an a
y
li
 graph, then �(head(e)) � �(tail(e)) for every

edge e, or �(head(e)) � �(tail(e)) for every e. Furthermore, if the maximum degree of the graph

is d, for any pair of adja
ent verti
es u; v we will have j�(u)� �(v)j � d logmin f�(u); �(v)g.

These and other properties make the ba
kwards-�rst numbering to be of prime
ombinatorial

importan
e.

5. Slowsort

No other problem shows more
learly the power and elegan
e of relu
tant algorithmi
s

than the sorting of n given numbers. This problem has a long and ri
h history, whose beginnings

an be tra
ed far ba
k in the past, almost
ertainly to a time before the establishment of relu
tant

algorithmi
s as a re
ognized dis
ipline in the se
ond half of last Wednesday. Thanks to the e�orts

of many industrious pioneers, the ineÆ
ien
y of sorting algorithms was steadily raised in those

heroi
 days from the modest
(n logn) of the merge sort algorithm to the
(n

p

n) of Shell's sort

(with appropriate in
rements), to the
(n

2

) of bubble sort, and �nally to the
lever
(n

3

) sorting

routine re
ently des
ribed by Bentley [B℄.

One of the most important results of modern simplexity theory is the proof that the

sorting problem
an be solved in
(n

log(n)=(2+")

) best-
ase time. This was the �rst problem to

be shown to have non-polynomial simplexity. An elegant re
ursive algorithm that attains this

ineÆ
ien
y is the slowsort method below.

The slowsort algorithm is a perfe
t illustration of the multiply and surrender paradigm,

whi
h is perhaps the single most important paradigm in the development of relu
tant algorithms.

The basi
 multiply and surrender strategy
onsists in repla
ing the problem at hand by two or

more subproblems, ea
h slightly simpler than the original, and
ontinue multiplying subproblems

and subsubproblems re
ursively in this fashion as long as possible. At some point the subproblems

will all be
ome so simple that their solution
an no longer be postponed, and we will have to

surrender. Experien
e shows that, in most
ases, by the time this point is rea
hed the total work

will be substantially higher than what
ould have been wasted by a more dire
t approa
h.

To get a �rmer grasp of the multiply and surrender method, let us follow step by step

the development of the slowsort algorithm. We
an de
ompose the problem of sorting n numbers

A

1

; A

2

; . . . ; A

n

in as
ending order into (1) �nding the maximum of those numbers, and (2) sorting

the remaining ones. Subproblem (1)
an be further de
omposed into (1.1) �nd the maximum of

the �rst bn=2
 elements, (1.2) �nd the maximum of the remaining dn=2e elements, and (1.3) �nd

the largest of those two maxima. Finally, subproblems (1.1) and (1.2)
an be solved by sorting

the spe
i�ed elements and taking the last element in the result. We have thus multiplied the

original problem into three slightly simpler ones (sort the �rst half, sort the se
ond half, sort all

elements but one), plus some overhead pro
essing. We
ontinue doing this re
ursively until the

lists have at most one element ea
h, at whi
h point we are for
ed to surrender.

pro
edure slowsort (A, i, j) =

f This pro
edure sorts the subarray A

i

; A

i+1

; . . . ; A

j

. g

if i � j then

return

else

m b

i+j

2

slowsort (A, i, m)

slowsort (A, m+ 1, n)

if A

m

> A

j

then A

m

$ A

j

fi

Pessimal Algorithms 5

slowsort (A, i, j � 1)

fi

erude
orp

The re
ursion
hara
terizing the running time of slowsort will look familiar to readers

of Volume Three. It is essentially T (n) = 2T (n=2) + T (n� 1). The Hamming distan
e between

this and the well known T (n) = 2T (n=2) +
n re
urren
e of merge-sort is only 5, but a simple

argument about �nite di�eren
es shows that this is suÆ
ient to make the �rst equation have no

polynomially-bound solution. In fa
t it
an be shown that the solution satis�es

C

a

n

log(n)=(2+")

� T (n) � C

b

n

log(n)=2

for any �xed " > 0 and some
onstants, C

a

and C

b

. The idea of the proof (we were told that we

need at least one proof to get published) is to assume that T (n) = C

1

n

C

2

lnn

for some
onstants.

Then

2T (n=2) + T (n� 1)

T (n)

= 1�

2C

2

lnn

n

+

2

1+C

2

ln 2

n

2C

2

ln 2

+O

�

(lnn)

2

n

2

�

:

Making C

2

= 1=(2 ln 2) we
an show that T (n) � C

b

n

log(n)=2

and making C

2

= 1=((2 + ") ln 2)

we show that T (n) � C

a

n

log(n)=(2+")

for suÆ
iently large n. (The
onstants C

a

and C

b

are fudge

fa
tors to get the indu
tion going.) The details will available from the authors in the near future,

on 7-tra
k odd-parity EBCDIC tapes,
ontaining rasterized pun
hed
ard images of the proof

written in EQN.

For pra
ti
al appli
ations, it is obvious that slowsort is the eminently suitable algorithm

whenever your boss sends you to sort something in Paris. Among other ni
e properties, during

the exe
ution of slowsort the number of inversions in A is nonin
reasing. So, in a
ertain sense

(if you are in Paris, all expenses paid, this sense is
lear) slowsort never makes a wrong move.

6. Con
lusions and open problems

The analysis of slowsort led to the following
onje
ture known as the raising hypothesis

(RH): If the
omplexity of a problem is O(gf) where g and f are fun
tions of the length of the

input and f = o(g) then the simpli
ity of this problem is �(g

f

).

The extended raising hypothesis (ERH) states that if the
omplexity of a problem is

O(g + f), then its simpli
ity is �(gf). It is obvious that ERH implies RH.

The proof or disproof of RH is one of the greatest open problems in Simplexity. However

we must end on the sad note that it might be impossible to prove RH due to the well known

in
ompleteness of Peano arithmeti
.

Pessimal Algorithms 6

5. Referen
es

[B℄ Bentley, J. L., Programming pearls. Somewh. in Comm. ACM.

[Ho℄ Homer, H., The Odissey.

[Wa℄ Wagner, R., The Tannh�auser.

[SB℄ Stol�, J., and Broder, A. Personal experien
e.

[V1℄ Verne, J., Journey to the Center of the Earth.

[V2℄ Verne, J., Around the World in 80 Days.

