
Pessimal Algorithms

and Simplexity Analysis

Andrei Broder and Jorge Stolfi

DEC Systems Researh Center

130 Lytton Avenue, Palo Alto CA 94301

Abstrat: The twin disiplines of Pessimal Algorithm Design and Simplexity Analysis

are introdued and illustrated by means of representative problems.

1. Introdution

Consider the following problem: we are given a table of n integer keys A

1

; A

2

; . . ., A

n

and a query integer X . We want to loate X in the table, but we are in no partiular hurry to

sueed; in fat, we would like to delay suess as muh as possible.

We might onsider using the trivial algorithm, namely test X against A

1

; A

2

, et. in

turn. However, it might happen that X = A

1

, in whih ase the algorithm would terminate right

away. This shows the na��ve algorithm has O(1) best-ase running time. The question is, an we

do better, that is, worse?

Of ourse, we an get very slow algorithms by adding spurious loops before the �rst test

of X against the A

i

. However, suh easy solutions are unaeptable, partly beause any fool an

see that the algorithm is just wasting time (whih would be very embarrassing to its author), but

mostly beause we need something to �ll the rest of this paper with. Therefore, we must look for

an algorithm that does indeed progress steadily towards its stated goal even though it may have

very little enthusiasm in (or even a manifest aversion to) atually getting there.

We an get an algorithm that satis�es this riterion and is muh better (that is, worse)

than the naive one if we keep the table A sorted in asending order. Then we an use the relutant

searh proedure below:

proedure researh (X, i, j: integer): integer =

f Result is the index k suh that A

k

= X, or �1 if no suh k exists. g

if i > j then return �1 fi

if i = j then if X = A

i

then return i else return �1 fi

m b

i+ j

2

if X � A

m

then

k researh (X, m+ 1, j)

if k = �1 then return researh(X, i, m) else return k fi

else

k researh (X, i, m)

if k = �1 then return researh (X, m+ 1, j) else return k fi

fi

erudeorp

[pessimal.tex edited by stol� on Tue May 20 02:05:42 1986 ℄

Pessimal Algorithms 2

The number of probes performed by this algorithm is independent of X and the A

i

, and

is given by the reurrene

T (n) =

(

1 + T (b

n

2

) + T (d

n

2

e) if n > 1

1 if n = 1

0 if n = 0

whih has the solution

y

T (n) = �

�

n+

n

1 + n

log(n+ 1)

3:14159+

logn log logn

�

:

(The proof will be given in a future report.) This represents a desimprovement by a fator of n

over the naive algorithm. Observe that the lak of enthusiasm of the relutant searh algorithm

is not at all evident from its behavior, sine it performs a X = A

i

test every O(1) operations,

never repeats a test, and stops as soon as it �nds the answer. Few searh algorithms, honest or

not, an math this performane.

2. Generalizations

The researh proedure is a prototypial example of an entirely new branh of Comput-

er Siene, the design and analysis of relutant algorithms. Intuitively, a relutant algorithm for a

problem P is one whih wastes time in a way that is suÆiently ontrived to fool a naive observer.

We an make this onept mathematially preise by saying that A is a relutant algorithm for

P i�

(9W)

^

o2N

w(A; t;W) ^ F

�

(W; o); (1)

where N is the set of all naive observers, t is time, w(A; t;W) is the prediate \A wastes t in the

way W", and F

�

(W; o) is the boolean test \W is suÆiently ontrived to fool o".

In the study of relutant algorithms, the performane of an algorithm A is better ex-

pressed by its ineÆieny or best-ase time, the minimum (as a funtion of n) over all inputs of

size n of the running time of A. The simplexity of a problem is the maximum ineÆieny among

the algorithms that solve P . An algorithm is said to be pessimal for a problem P if the best-ase

ineÆieny of A is asymptotially equal to the simplexity of P .

Relutant algorithms have plenty of important pratial appliations. For example, the

relutant searh algorithm is partiularly appliable to the ase of real keys (real not in the

mathematial sense, but rather in the sense that they an be used to open doors and drawers).

The relutant searh algorithm is the only one known so far that aurately emulates the behavior

of bundles of suh keys [SB℄.

3. Path problems in pleasant graphs

Table searh an be viewed as a speial ase of the following more general problem. We

are given a \maze", i.e. an undireted graph G with n nodes, and an \entry" node u in it. Our

task is to �nd a path from u to a spei�ed \exit" node v, by walking on the maze one edge at at

time. In the spirit of lassial Analysis of Algorithms, we would immediately think of using one

of the eÆient shortest-path or graph traversal methods. However, suppose the maze is atually

quite agreeable, so muh that we wouldn't mind spending a few extra yles in the searh for

v, in fat we vaguely hope, nay, deidedly wish, that the searh will take as long as possible,

and even though our sense of duty prevents us from giving up the searh altogether, we are not

that insensitive to the primeval neessities of our human nature, and besides what is wrong with

taking a more relaxed attitude to the problem, as long as we do what we are supposed to do, sine

y

We use \log" for logarithms in base two, and \ln" for natural logarithms.

Pessimal Algorithms 3

we have always been told that haste makes waste, and no one needs to be perfet anyway, and

so forth. With these assumptions, the problem falls squarely within the domain of our theory.

This problem has been extensively studied by graph theorists, who all it the sloppiest

path problem. The important branh of operations researh that goes by the name of anemi

programming is entirely devoted to the study of ineÆient methods for solving this problem.

What do we know about its simplexity? Early on it was shown by R. Wagner [Wa℄ that if we

have no information about the loation of v, the best-ase running time may be as low as O(1):

at every single step | even the very �rst one | we risk stumbling upon v and falling out of the

maze, no matter how muh we would like to avoid it. However, H. Homer [Ho℄ showed that, if

the graph is embedded in the plane (or in a at globe), and we are given an orale that reveals

the general diretion of our goal, it is possible to delay getting there until after most or all of

the graph has been traversed. In fat, in this situation the delay is limited not by the inherent

simplexity of the problem, but by its monotoniity.

y

Homer's algorithm has
(n) ineÆieny,

and this is a lower bound for the simplexity of the sloppiest path problem.

The relutant searh method and Homer's sloppiest-path algorithm are both based on

the same idea, variously known as the method of reverse gradient or method of feeblest desent.

We mention in passing that another important paradigm for relutant algorithm design was

desribed by Homer in the same paper. It was given by its inventor the olorful name of Penelope's

stratagem, and relies in the use of a for loop whose step osillates between positive and negative

values at eah iteration. Unfortunately, this tehnique (whih is presently alled the baktrak

method), has beome so well-known that even naive observers an spot it at �rst sight, and is

now of historial interest only.

4. Bakwards-�rst searh

A somewhat similar problem is that of enumerating all n verties of a onneted graph

G in a systemati fashion. This problem has been extensively studied in the framework of lassial

theory of algorithms, and it is usually solved by the well-known depth-�rst [V1℄ or breadth-�rst

[V2℄ algorithms, whih exhibit
(n) best-ase time.

This was for a long time thought to be an upper bound to the simplexity of the problem,

but on Otober 4, 1984 at 2:17 p.m. the relutant algorithmis ommunity was shaken by the

disovery of a searh strategy exhibiting
(n

2

) ineÆieny for an important lass of graphs. The

bakwards �rst searhing method, as it was alled by its inventor, is desribed below. Like its

predeessors, it is best thought of as a method for assigning to the verties v

1

; v

2

; . . . ; v

n

of G

the integer labels �(v

1

); �(v

2

); . . . ; �(v

n

), in the range 1 to n. The algorithm is expressed by the

reursive proedure bwfs below. The proedure assumes all labels �(v) are initially zero; the

reursion is started by the all bwfs(v

1

,1).

proedure bwfs (v: vertex, i: integer) =

�(v) i

for eah neighbor u of v do

if 0 < �(u) < i then bwfs (u, i) fi

rof

for eah neighbor u of v do

if �(u) = 0 then bwfs (u, i+ 1) fi

rof

erudeorp

We leave to the reader as an enlightening exerise the task of proving the orretness of

this algorithm, and establishing that its ineÆieny is indeed �(n

2

) for straight line graphs. Its

y

Also known as boredom.

Pessimal Algorithms 4

ineÆieny on general graphs is an open problem, but it seems that it never does worse (that is,

better) than O(n

p

n).

The bakwards �rst numbering of the verties of a graph is by de�nition the labels �(v)

assigned by this algorithm. Like the depth-�rst and breadth-�rst numberings, this one has several

interesting properties. Due to lak of spae, we will mention only a ouple of them here. If the edges

are arbitrarily oriented so as to produe an ayli graph, then �(head(e)) � �(tail(e)) for every

edge e, or �(head(e)) � �(tail(e)) for every e. Furthermore, if the maximum degree of the graph

is d, for any pair of adjaent verties u; v we will have j�(u)� �(v)j � d logmin f�(u); �(v)g.

These and other properties make the bakwards-�rst numbering to be of prime ombinatorial

importane.

5. Slowsort

No other problem shows more learly the power and elegane of relutant algorithmis

than the sorting of n given numbers. This problem has a long and rih history, whose beginnings

an be traed far bak in the past, almost ertainly to a time before the establishment of relutant

algorithmis as a reognized disipline in the seond half of last Wednesday. Thanks to the e�orts

of many industrious pioneers, the ineÆieny of sorting algorithms was steadily raised in those

heroi days from the modest
(n logn) of the merge sort algorithm to the
(n

p

n) of Shell's sort

(with appropriate inrements), to the
(n

2

) of bubble sort, and �nally to the lever
(n

3

) sorting

routine reently desribed by Bentley [B℄.

One of the most important results of modern simplexity theory is the proof that the

sorting problem an be solved in
(n

log(n)=(2+")

) best-ase time. This was the �rst problem to

be shown to have non-polynomial simplexity. An elegant reursive algorithm that attains this

ineÆieny is the slowsort method below.

The slowsort algorithm is a perfet illustration of the multiply and surrender paradigm,

whih is perhaps the single most important paradigm in the development of relutant algorithms.

The basi multiply and surrender strategy onsists in replaing the problem at hand by two or

more subproblems, eah slightly simpler than the original, and ontinue multiplying subproblems

and subsubproblems reursively in this fashion as long as possible. At some point the subproblems

will all beome so simple that their solution an no longer be postponed, and we will have to

surrender. Experiene shows that, in most ases, by the time this point is reahed the total work

will be substantially higher than what ould have been wasted by a more diret approah.

To get a �rmer grasp of the multiply and surrender method, let us follow step by step

the development of the slowsort algorithm. We an deompose the problem of sorting n numbers

A

1

; A

2

; . . . ; A

n

in asending order into (1) �nding the maximum of those numbers, and (2) sorting

the remaining ones. Subproblem (1) an be further deomposed into (1.1) �nd the maximum of

the �rst bn=2 elements, (1.2) �nd the maximum of the remaining dn=2e elements, and (1.3) �nd

the largest of those two maxima. Finally, subproblems (1.1) and (1.2) an be solved by sorting

the spei�ed elements and taking the last element in the result. We have thus multiplied the

original problem into three slightly simpler ones (sort the �rst half, sort the seond half, sort all

elements but one), plus some overhead proessing. We ontinue doing this reursively until the

lists have at most one element eah, at whih point we are fored to surrender.

proedure slowsort (A, i, j) =

f This proedure sorts the subarray A

i

; A

i+1

; . . . ; A

j

. g

if i � j then

return

else

m b

i+j

2

slowsort (A, i, m)

slowsort (A, m+ 1, n)

if A

m

> A

j

then A

m

$ A

j

fi

Pessimal Algorithms 5

slowsort (A, i, j � 1)

fi

erudeorp

The reursion haraterizing the running time of slowsort will look familiar to readers

of Volume Three. It is essentially T (n) = 2T (n=2) + T (n� 1). The Hamming distane between

this and the well known T (n) = 2T (n=2) + n reurrene of merge-sort is only 5, but a simple

argument about �nite di�erenes shows that this is suÆient to make the �rst equation have no

polynomially-bound solution. In fat it an be shown that the solution satis�es

C

a

n

log(n)=(2+")

� T (n) � C

b

n

log(n)=2

for any �xed " > 0 and some onstants, C

a

and C

b

. The idea of the proof (we were told that we

need at least one proof to get published) is to assume that T (n) = C

1

n

C

2

lnn

for some onstants.

Then

2T (n=2) + T (n� 1)

T (n)

= 1�

2C

2

lnn

n

+

2

1+C

2

ln 2

n

2C

2

ln 2

+O

�

(lnn)

2

n

2

�

:

Making C

2

= 1=(2 ln 2) we an show that T (n) � C

b

n

log(n)=2

and making C

2

= 1=((2 + ") ln 2)

we show that T (n) � C

a

n

log(n)=(2+")

for suÆiently large n. (The onstants C

a

and C

b

are fudge

fators to get the indution going.) The details will available from the authors in the near future,

on 7-trak odd-parity EBCDIC tapes, ontaining rasterized punhed ard images of the proof

written in EQN.

For pratial appliations, it is obvious that slowsort is the eminently suitable algorithm

whenever your boss sends you to sort something in Paris. Among other nie properties, during

the exeution of slowsort the number of inversions in A is noninreasing. So, in a ertain sense

(if you are in Paris, all expenses paid, this sense is lear) slowsort never makes a wrong move.

6. Conlusions and open problems

The analysis of slowsort led to the following onjeture known as the raising hypothesis

(RH): If the omplexity of a problem is O(gf) where g and f are funtions of the length of the

input and f = o(g) then the simpliity of this problem is �(g

f

).

The extended raising hypothesis (ERH) states that if the omplexity of a problem is

O(g + f), then its simpliity is �(gf). It is obvious that ERH implies RH.

The proof or disproof of RH is one of the greatest open problems in Simplexity. However

we must end on the sad note that it might be impossible to prove RH due to the well known

inompleteness of Peano arithmeti.

Pessimal Algorithms 6

5. Referenes

[B℄ Bentley, J. L., Programming pearls. Somewh. in Comm. ACM.

[Ho℄ Homer, H., The Odissey.

[Wa℄ Wagner, R., The Tannh�auser.

[SB℄ Stol�, J., and Broder, A. Personal experiene.

[V1℄ Verne, J., Journey to the Center of the Earth.

[V2℄ Verne, J., Around the World in 80 Days.

