
MINO�— Visual bigFORTH

Bernd Paysan

August 26, 1997

Abstract

MINO� is a toolkit for rapid development

of graphical user interfaces (GUIs) in Forth.

MINO� comprises a widget library (called

MINO�, too), and a graphical editor to master

MINO�, therefore it’s called Theseus. This pa-

per gives an overview over the widget classes.

An example is used to show how to create di-

alogs with the help of Theseus.

1 Introduction

1.1 What’s Visual?

The wish to have a “Visual Forth” as counter-

part to Visual BASIC (Microsoft) and Delphi

(Borland) was well heard at the Forth–Tagung

in 1996, and even before. Even C++ and new

languages as Java have something similar, but

Forth doesn’t.

Mostly, these programming systems are in-

tegrated development environments1 completed

by a form painting program. This form paint-

ing program makes use of a library containing

a variety of elements for a graphical user inter-

face; e.g. windows, buttons, edit–controls, draw-

ing areas, etc.. These elements can be combined

with the mouse by drag&drop or click&point ac-

tions. Missing code then is inserted to add ac-

tions when buttons are pressed.

Typical applications are often related to data

base access. Therefore, many of these systems

already contain a data base engine or at least

a standardized interface to a data base, such as

ODBC.

Another aspect are complex components.

With some of these toolkits, you can create a

1That’s what we had with Forth ever since

web browser with some mouse clicks and a few

keystrokes. However, these components hide

their details, a shrink wrapped web browser ap-

plication is not necessesarily worse.

The interactivity of these tools usually is not

very high. You create your form, write your ac-

tions as code and compile it more (Delphi) or less

(Visual Age for C++) fast. Trying it usually isn’t

possible before the compiler run.

1.2 Why Visual?

It isn’t really necessary to brush graphical user

interfaces together, as it isn’t to edit texts WYSI-

WYG. Many typesetting functions are more se-

mantically than visual, e.g. a text is a head-

line or emphasized instead of written in bold 18

point Garamond or 11 point Roman italics. All

this is true for user interfaces, to some extend

much more. It’s not the programmer that de-

cides which font and size to use for the UI —

that’s up to the user. As is color of buttons and

texts.

Also to layout individual widgets, more ab-

straction than defining position, width and

height makes sense. Typically buttons are ar-

ranged horizontally or vertically, perhaps with a

bit distance between them. The size of buttons

must follow the containing strings, and should

conform to aesthetics (e.g. each button in a row

has the same width).

Such an abstract model, related to TEX’s

boxes&glues, programs quite good even without

a visual editor. The programmer isn’t respon-

sible for “typesetting” the buttons and boxes.

This approach is quite usual in Unix. Motif and

Tcl/Tk use neighborhood relations, Interviews

uses boxes&glues. I decided for boxes&glues,

since it’s a fast and intuitive solution, although

1 INTRODUCTION

it needs more objects to get the same result.

These concepts contradict somehow with a

graphical editing process, since the editors I

know don’t provide abstract concepts (“place left

of an object” or “place in a row”), but positions.

1.3 Visual Forth?

One point makes me think: the packets that al-

low real visual form programming have many

years of programming invested in. Microsoft,

Borland, and IBM may hire hundreds of pro-

grammers just for one such project. This man–

power isn’t available for any Forth project. But

stop:

� Forth claims that good programmers can

work much more efficient with Forth

� A team of 300 (wo)men blocks itself. If the

boss partitions the work, the programmers

need to document functions, and to read

documents from other programmer related

to other functions and must understand

them, or ask questions to figure things out.

Everybody knows that documenting takes

much longer than writing the code, and ex-

plaining is even worse. Thus at a certain

project complexity level, no time is left for

the programming task; all time is used to

specify planned functions and read the spec-

ification from other programmers. Or the

programmers just chat before the door holes

of the much too small and noisy cubicles.

� A good programmer reportedly works 20

times as fast as a bad, even though he

can’t type in more key strokes per time.

The resulting program is either up to 20

times shorter or has 20 times less bugs (or

both)—with more functionality at the same

time. Teamwork however prevents good

programmers from work, since they are

frustrated by bad programmers surround-

ing them, from their inability to produce re-

quired information in time; and the bad pro-

grammers are frustrated by the good ones,

which makes them even worse.

� Therefore, even in large project, the real

work is (or should be) done by a small “core

team”. Then the Dilbert rule applies: what

can be done with two people, can be done

with on at half of the costs.

Furthermore, bigFORTH–DOS already con-

tains a “Text-GUI”, without graphical editor, but

with an abstract boxes&glue concept, which, as

claimed above, hinders the use of such an editor.

Finally I wanted to get rid of DOS, and port

bigFORTH to a real operating system (Linux).

In contrast to Windows and OS/2, user interface

and screen access are separated there. Drawing

on the screen uses the X Window System (short

X), the actual user interface is implemented in

a library. This is the reason, why there is no

common interface, but a lot of different libraries,

such as Athena Widgets, Motif, Tcl/Tk, xforms,

Qt, gtk, and others. The “look and feel” from

Motif-like buttons is quite common, even Win-

dows and MacOS resemble it.

All these libraries have disadvantages. The

Athena Widgets are hopelessly outdated. Mo-

tif is commercial, even if a free clone (Lesstif) is

in creation. It’s slow and a memory hog. Tcl/Tk

consumes less memory, but it’s even slower. How

do you explain your users that drawing a win-

dow takes seconds, while Quake renders ani-

mated 3D-graphic on the same machine? Qt is

fast, but it’s written in C++ and doesn’t have a

foreign language interface now. gtk, the GIMP

toolkit, has more foreign language interfaces,

and it’s free, but it wasn’t available until re-

cently.

Therefore I decided to port the widget classes

from bigFORTH–DOS to X, and write an editor

for it. Such classes written in Forth naturally fit

in an development environment an are — from

the Forth point of view — easier to maintain.

There are not such many widget libraries in C,

because it’s a task written in an afternoon, but

because the available didn’t fit the requests, and

a modification looked desperate.

1.4 The Name — Why MINO�?

“Visual XXX” is an all day’s name, and it’s too

much of a microsoftism for me. “Forth” is a no-

word, especially since the future market con-

sists of one billion Chinese, and for them four is

a number of unluck (because “se” (four) sounds

2 WIDGET CLASSES: DISPLAY, WIDGET, ACTOR

much like “se” (death)). However, even Borland

doesn’t call their system “Visual TurboPascal”,

but “Delphi”.

Greek is good, anyway, since this library re-

lates to the boxes&glues model of TEX, which is

pronounced greek, too. Compared with Motif,

the library is quite copact (MINimal), and since

it’s mainly for Linux, the phonetic distance is

small. . . I pronounce it greek: “menoz”.

1.5 Port to Windows

I ported MINO� to Windows 95/NT, on the de-

mand of some potential users. It doesn’t run

near as stable as under Linux/X, since there are

a hideous number of subtle bugs in Windows,

and I don’t have the time to work around all of

them. Drawing polygons doesn’t work as well as

on X, and all the bugs that are in the memory

drawing device can drive me nuts.

2 Widget Classes: Display,

Widget, Actor

The principle of the class hierarchy was fixed

with the given library for DOS. This library dis-

tinguishes between widgets (“window gadgets”)

and displays. Displays are widgets that also

can paint, such as windows, viewports, backing

stores and double buffers. They are responsi-

ble for translating the abstract interface to the

actual graphic library, and for event handling

(mouse clicks, key strokes, redraws, etc.).

The widgets themselves are divided into boxes

(horizontal and vertical), buttons, toggles, la-

bels, icons, text input fields, sliders, scalers, can-

vas. . . alltogether currently 88 classes.

Originally, all the actions that are invoked at

clicks where simple Forth words. It has shown

that this wasn’t suitable. Objects manipulate

data representations, and it’s useful to have the

action tied to the data. Therefore, the actions

now are translated using “action” objects. E.g. a

toggle button may set a variable to “on” or “off”,

and retrieve it’s state from the variable. Or some

radio buttons change the number in a variable.

Therefore a number of different action classes

provides interfaces of object actions for simple

things to complex things as showing tool tips.

This solves the problem of varying reactions on

events with simple means, without making the

default path more complicated.

One further class is related to displays: the re-

sources. This class contains screen specific data,

such as display, screen, font, colors, color-map,

cursors, and the graphic context.

A class hierarchy comprises a common inter-

face, thus methods and variables, which are un-

derstood by all subclasses. The main elements of

the widget protocol (Figure 1) and displays (Fig-

ure 2) are presented here.

Derived classes certainly have additional vari-

ables, object pointers, and eventually additional

methods.

The display class is derived from the widget

class. Therefore it understands all messages of a

widget class. Some displays as viewports, back-

ing store, and double buffer can be used as nor-

mal widgets as part of a dialog or a window.

2.1 Composed Objects

More complex objects such as sliders and scalers

are composed out of simpler objects (especially

glues). This was inspired by gtk, which com-

poses even simple objects. I implemented slid-

ers and scalers as one object before, and the re-

sult was quite lengthy code, difficult to debug.

The composed objects require only half of the

code, and where written in one day. Composed

objects take more memory at run-time, and are

presumed to redraw slightly slower.

2.2 The Complete Class Hierarchy

The class hierarchy states also the memory size

of the object (for variables) and the size of the

method table (per class). Indentation shows sub-

classing.

2.2.1 Actions

The available actions concentrate on toggle and

radio buttons. These buttons have two dis-

tinct states — set or reset. The action may

set a flag (toggle-var), store a number to

a variable (toggle-var), or actions at set

and reset (toggle), or to query and change

2 WIDGET CLASSES: DISPLAY, WIDGET, ACTOR

Method Purpose

PARENT points to the parent object

WIDGETS points to the next object

DPY the display of this widget

INIT initializes the object

DISPOSE deletes the object

HGLUE horizontal glue

VGLUE vertical glue

XINC horizontal size increment

YINC vertical size increment

XYWH bounding box

RESIZE changes size

REPOS changes position

RESIZED recomputes size

!RESIZED more detailed recomputation

CLOSE closes the window

DRAW draws itself

ASSIGN assigns a new contents

CLICKED click event handling

KEYED keystroke handling

INSIDE? is this point inside the object?

HANDLE-KEY? does it handle keystrokes?

FOCUS object got focus

DEFOCUS object looses focus

SHOW the object is visible

HIDE the object is invisible

MOVED pointer over the object

LEAVE pointer leaves object

DELETE remove object from list

APPEND add object to list

SHOW-YOU object should show itself

FIRST-ACTIVE set active object to the first

NEXT-ACTIVE next object becomes active

PREV-ACTIVE previous object becomes active

Figure 1: Widget messages

Method Purpose

XRC resource

LINE line between two points

TEXT paint text

IMAGE draw pixmap

BOX draw rectangle

MASK paint icon

FILL fill polygon

STROKE draw polygon outline

DRAWER call drawing routine

DRAWABLE resources for drawing

SYNC end update

MAP map window

UNMAP unmap window

MOUSE mouse position

SCREENPOS screen position of display

TRANS coordinate transformation

TRANS’ reverse transformation

TRANSBACK transformation to GET–WIN

GET–DPY get outer display

GET–WIN get containing window

SET–FONT set font

SET–COLOR set color

SET–CURSOR set mouse cursor

TXY! set tile offset

CLIP–RECT set clipping rectangle

GET–EVENT get event

HANDLE–EVENT handle events

SCHEDULE–EVENT schedule events

CHILD–MOVED distributes mouse moves

CLICK wait for mouse click

CLICK? query mouse click

MOVED? query mouse move

MOVED! set mouse as moved

SHOW–ME show object at (x,y)

SCROLL scroll to (x,y)

CLIPX horizontal clipping

CLIPY vertical clipping

GEOMETRY resize in object coordinates

>EXPOSED wait until visible

Figure 2: Display messages

2 WIDGET CLASSES: DISPLAY, WIDGET, ACTOR

(toggle-state). Slider and scaler (with maxi-

mum position and step width) are handled sim-

ilar to toggle-state.

ACTOR 12 80

SCALE-VAR 20 80

SCALE-DO 24 80

SLIDER-VAR 24 80

SLIDER-DO 28 80

SIMPLE 16 80

DRAG 16 80

REP 16 80

DRAWER 16 80

TOGGLE-STATE 20 80

SCALE-ACT 24 80

SLIDER-ACT 28 80

TOGGLE-VAR 16 80

TOGGLE-NUM 20 80

TOGGLE 24 80

2.2.2 X–Resource

This object contains server related data like

fonts, graphic context, colors, and similar.

XRESOURCE 48 92

2.2.3 Combined Widgets

These widgets contain other widgets and com-

pute their arrangement. The letters stay for:

H horizontal

V vertical

A one active element, navigation with TAB

R radio buttons

T tabbed box — all non-glue objects have equal

size

Further, there are combined widgets like slid-

ers, scalers, boxes which contain a viewport and

the corresponding sliders, as well as boxes that

can be resized by the user using a hsizer or

vsizer. Furthermore, some boxes set the step-

ping width during resize and sliding.

Beside being partitioned in different classes,

boxes contain attributes. Their size can be fixed

to a minimum, both horizontal as vertical. A

separating space can be inserted between each

element, the box may have a shadow, and made

invisible. This allows to create the popular card

files. This could also be used to hide commands

that are currently not available.

COMBINED 68 224

VBOX 68 224

SLIDERVIEW 76 224

ASLIDERVIEW 76 224

VRBOX 68 224

VTBOX 68 224

VRTBOX 68 224

VATBOX 68 224

VARTBOX 68 224

VABOX 68 224

VASBOX 72 228

VRESIZE 68 224

MODAL 76 224

VARBOX 68 224

HBOX 68 224

HRBOX 68 224

HTBOX 68 224

HRTBOX 68 224

HATBOX 68 224

HARTBOX 68 224

HABOX 68 224

HASBOX 72 228

HRESIZE 68 224

HARBOX 68 224

2.2.4 Buttons and Labels

Active components are available in many fla-

vors, with and without icon, as button, toggle

button, to open menus . . .

GADGET 28 188

WIDGET 36 196

BOXCHAR 48 200

BUTTON 52 200

ALERTBUTTON 60 200

MENU-ENTRY 52 200

EDIMENU-ENTRY 56 200

MENU-TITLE 60 208

INFO-MENU 68 212

SUB-MENU 60 208

ICON-BUTTON 56 200

BIG-ICON 56 200

ICON-BUT 56 200

LBUTTON 52 200

FILE-WIDGET 76 200

TEXT-LABEL 52 200

MENU-LABEL 52 200

2 WIDGET CLASSES: DISPLAY, WIDGET, ACTOR

TOGGLECHAR 52 208

FLIPICON 56 208

TOGGLEICON 60 208

TBUTTON 56 208

TICONBUTTON 64 208

TOPINDEX 56 208

TOGGLEBUTTON 60 208

FLIPBUTTON 56 208

RBUTTON 56 208

TRIBUTTON 48 200

SLIDETRI 48 200

ICON 40 196

ICON-PIXMAP 44 200

2.2.5 Text Fields

Text fields allow to enter texts and numbers

(with syntax checking)

TEXTFIELD 64 212

INFOTEXTFIELD 68 212

INFONUMBERFIELD 68 212

NUMBERFIELD 64 212

2.2.6 Slider and Resizer

Slider position the interior of viewports; scaler

are useful to enter numbers (in a given range).

Resizer change the size of a hasbox or a

vasbox, dragging the border into the desired di-

rection.

HSLIDER 68 228

HSCALER 80 232

HSLIDER0 68 228

VSLIDER 68 228

VSCALER 80 232

VSLIDER0 68 228

HRTSIZER 52 208

HXRTSIZER 52 208

HMRTSIZER 52 208

HSIZER 52 208

VRTSIZER 52 208

VXRTSIZER 52 208

VMRTSIZER 52 208

VSIZER 52 208

2.2.7 Glues

Glues are expandable objects. Inserted at the

right place, they allow a decent layout. E.g.

placing two glues left and right of an object cen-

ters the object. Sliders transform the total and

the visible size of a viewport into glue values,

easing computation of slider width and position.

One special glue is the canvas, which allows

drawing into it. It understands some sort of tur-

tle graphic.

(NIL 36 196

ARULE 48 196

GLUE 52 196

RULE 56 196

CANVAS 108 272

MFILL 56 196

MSKIP 56 196

SSKIP 64 196

VRULE 56 196

HRULE 56 196

VGLUE 52 196

HGLUE 52 196

2.2.8 Terminal and Editor

Terminal and screen editors also are available

as elementary components.

TERMINAL 104 276

SCREDIT 144 300

2.2.9 Displays

These are windows, viewports (display only a

section), double buffer (for flicker free drawing),

menu frames. . . Furthermore, standard dialogs

like the file selector are derived from the win-

dow class.

DISPLAYS 136 356

WINDOW 148 368

FILE-SELECTOR 176 372

TERMWIN 148 368

MENU-WINDOW 148 368

FRAME 152 368

MENU-FRAME 152 368

(NILSCREEN 136 356

BACKING 160 360

VIEWPORT 216 372

SCRVIEWPORT 216 372

HVIEWPORT 224 372

VVIEWPORT 224 372

DOUBLEBUFFER 160 360

3 THESEUS — THE GUI EDITOR

Figure 3: Theseus after starting it

3 Theseus — the GUI editor

How do you edit such a user interface? Format-

ing buttons and text fields is done by the system,

therefore not the task of the programmer, which

only has to fix the logical arrangement.

The project therefore is hierarchically ar-

ranged. The topmost hierarchy are the dialog

windows. These windows understand two ad-

ditional methods, open and modal-open which

allows to create both non-modal and modal di-

alogs. The user then creates a framework of

horizontal and vertical boxes inside the dialog.

These boxes are filled with contents and glues

then.

Two small examples will show how to use The-

seus. The first creates a small calculator operat-

ing on integers. Figure 3 shows the editor at the

project start.

Input fields and the result field should appear

one beneath the other, therefore a vbox is cre-

ated, and three infonumberfields inside it.

This step is shown in Figure 4.

Beneath the two input fields the operation

buttons should be arranged one aside each other.

A horizontal box (hbox) does the job, with four

buttons in it. A small distance between each

field and each button would be nice, too. Figure

Figure 4: Input and output fields

5 shows the state after these operations.

Now these objects need a useful text. There-

fore you click each object (in edit mode), and type

the text. The result is shown in Figure 6.

To reference the input field, each one must

have an internal name. Choose name mode,

click to the fields and enter the name (a#, b#,

and c#). Now you can insert code, i.e. for the

operation A+B. Corresponding to the example in

Figure7, the other code is inserted, too.

The code looks as follows:

a# get b# get d+ r# assign

a# get b# get d- r# assign

a# get b# get d* r# assign

a# get b# get drop ud/mod r# assign drop

But stop! Maybe it’s useful to take the result

and copy it to one of the input buttons for reuse.

Thus two additional buttons are required, and

to make it nice, all buttons should have the

same size (with “tabbing” box style). The win-

dow must have a title, and a name; to have it

shown after startup, click on the “Show” button,

too. The result is sown in Figure 8.

The additional code looks like this:

r# get a# assign

r# get b# assign

Now you can try the result by pressing the

“run” icon. Theseus generates the code and

3 THESEUS — THE GUI EDITOR

Figure 5: Buttons for computation

Figure 6: Texts

Figure 7: Code

Figure 8: More buttons, more code

4 OUTLOOK AND CONCLUSION

Figure 9: The calculator

starts a new invocation of bigFORTH which

compiles it and starts the application. Figure

9 shows the final window.

3.1 Automatically Generated Code

Theseus generates Forth code from these but-

tons. It derives a class from window, which will

contain the dialog. All objects (except boxes) get

a name (generated automatically, if none exists)

and an object pointer to access them. The code

for this example project looks as shown in Fig-

ure 10. This code is also MINO�’ internal data

format.

4 Outlook and Conclusion

MINO� has a lot of features that haven’t been

explained here. Theseus isn’t finished yet, but

it can compose most of the things you need. It

isn’t as interactive as I wish it (especially it can’t

run application code from within the editor yet);

and debugging can be improved. It also lacks

documentation, and tons of good examples.

To be even more competitive, MINO� would

need more complex classes, such as a WYSI-

WYG text editor, a web browser (both could be

identical), OpenGL drawing areas, an ODBC or

SQL interface to data bases, image export and

import, and more. The web browser should work

as online help system,which yet has nothing but

a name yet (“Ariadne”).

To get all these things done while I can only

work part-time on MINO�, I decided to give

MINO� on Linux away for free, if it’s used ac-

cording to the rules of the GNU public license

(GPL), so other people can join the effort. For

commercial users and users of MINO� for Win-

dows, the usual commercial license is available.

4 OUTLOOK AND CONCLUSION

\ automatic generated code

\ do not edit

windows also forth

window class calc

public:

early open

early modal-open

infonumberfield ptr a#

infonumberfield ptr b#

| button ptr (button-00)

| button ptr (button-01)

| button ptr (button-02)

| button ptr (button-03)

| button ptr (button-04)

| button ptr (button-05)

infonumberfield ptr r#

how:

: open screen self new >o map o> ;

: modal-open screen self new >o map stop o> ;

class;

calc implements

: init super init ˆ f ˆˆ | ([dumpstart])

&0.]N s" A:" ˆ infonumberfield new dup ˆˆ with bind a# endwith

&0.]N s" B:" ˆ infonumberfield new dup ˆˆ with bind b# endwith

ˆˆ S[a# get b# get d+ r# assign]S s" A+B" ˆ button new dup ˆˆ with bind

(button-00) endwith

ˆˆ S[a# get b# get d- r# assign]S s" A-B" ˆ button new dup ˆˆ with bind

(button-01) endwith

ˆˆ S[a# get b# get d* r# assign]S s" A*B" ˆ button new dup ˆˆ with

bind (button-02) endwith

ˆˆ S[a# get b# get drop ud/mod r# assign drop]S s" A/B" ˆ button new dup

ˆˆ with bind (button-03) endwith

ˆˆ S[r# get a# assign]S s" >A" ˆ button new dup ˆˆ with bind (button-04) endwith

ˆˆ S[r# get b# assign]S s" >B" ˆ button new dup ˆˆ with bind (button-05) endwith

6 ˆ hatbox new 1 hskips

&0.]N s" R:" ˆ infonumberfield new dup ˆˆ with bind r# endwith

4 ˆ vabox new panel

([dumpend]) g 1 0 ˆ modal new 0 hskips 0 vskips s" Calculator" assign ;

class;

script? [IF]

: main

calc open

&1 0 ?DO stop LOOP ; main

bye [THEN]

Figure 10: Automatically generated code

