#ifdef GL_ES precision highp float; #else #if !defined(lowp) #define lowp #endif #if !defined(mediump) #define mediump #endif #if !defined(highp) #define highp #endif #endif // Unpack a pair of values that have been packed into a single float. // The packed values are assumed to be 8-bit unsigned integers, and are // packed like so: // packedValue = floor(input[0]) * 256 + input[1], vec2 unpack_float(const float packedValue) { int packedIntValue = int(packedValue); int v0 = packedIntValue / 256; return vec2(v0, packedIntValue - v0 * 256); } vec2 unpack_opacity(const float packedOpacity) { int intOpacity = int(packedOpacity) / 2; return vec2(float(intOpacity) / 127.0, mod(packedOpacity, 2.0)); } // To minimize the number of ins needed, we encode a 4-component // color into a pair of floats (i.e. a vec2) as follows: // [ floor(color.r * 255) * 256 + color.g * 255, // floor(color.b * 255) * 256 + color.g * 255 ] vec4 decode_color(const vec2 encodedColor) { return vec4( unpack_float(encodedColor[0]) / 255.0, unpack_float(encodedColor[1]) / 255.0 ); } // Unpack a pair of paint values and interpolate between them. float unpack_mix_vec2(const vec2 packedValue, const float t) { return mix(packedValue[0], packedValue[1], t); } // Unpack a pair of paint values and interpolate between them. vec4 unpack_mix_color(const vec4 packedColors, const float t) { vec4 minColor = decode_color(vec2(packedColors[0], packedColors[1])); vec4 maxColor = decode_color(vec2(packedColors[2], packedColors[3])); return mix(minColor, maxColor, t); } // The offset depends on how many pixels are between the world origin and the edge of the tile: // vec2 offset = mod(pixel_coord, size) // // At high zoom levels there are a ton of pixels between the world origin and the edge of the tile. // The glsl spec only guarantees 16 bits of precision for highp floats. We need more than that. // // The pixel_coord is passed in as two 16 bit values: // pixel_coord_upper = floor(pixel_coord / 2^16) // pixel_coord_lower = mod(pixel_coord, 2^16) // // The offset is calculated in a series of steps that should preserve this precision: vec2 get_pattern_pos(const vec2 pixel_coord_upper, const vec2 pixel_coord_lower, const vec2 pattern_size, const float tile_units_to_pixels, const vec2 pos) { vec2 offset = mod(mod(mod(pixel_coord_upper, pattern_size) * 256.0, pattern_size) * 256.0 + pixel_coord_lower, pattern_size); return (tile_units_to_pixels * pos + offset) / pattern_size; } // logic for terrain 3d #ifdef TERRAIN3D uniform sampler2D u_terrain; uniform float u_terrain_dim; uniform mat4 u_terrain_matrix; uniform vec4 u_terrain_unpack; uniform float u_terrain_exaggeration; uniform highp sampler2D u_depth; #endif // methods for pack/unpack depth value to texture rgba // https://stackoverflow.com/questions/34963366/encode-floating-point-data-in-a-rgba-texture const highp vec4 bitSh = vec4(256. * 256. * 256., 256. * 256., 256., 1.); const highp vec4 bitShifts = vec4(1.) / bitSh; highp float unpack(highp vec4 color) { return dot(color , bitShifts); } // calculate the opacity behind terrain, returns a value between 0 and 1. highp float depthOpacity(vec3 frag) { #ifdef TERRAIN3D // create the delta between frag.z + terrain.z. highp float d = unpack(texture(u_depth, frag.xy * 0.5 + 0.5)) + 0.0001 - frag.z; // visibility range is between 0 and 0.002. 0 is visible, 0.002 is fully invisible. return 1.0 - max(0.0, min(1.0, -d * 500.0)); #else return 1.0; #endif } // calculate the visibility of a coordinate in terrain and return an opacity value. // if a coordinate is behind the terrain reduce its opacity float calculate_visibility(vec4 pos) { #ifdef TERRAIN3D vec3 frag = pos.xyz / pos.w; // check if coordingate is fully visible highp float d = depthOpacity(frag); if (d > 0.95) return 1.0; // if not, go some pixel above and check it this point is visible return (d + depthOpacity(frag + vec3(0.0, 0.01, 0.0))) / 2.0; #else return 1.0; #endif } // grab an elevation value from a raster-dem texture float ele(vec2 pos) { #ifdef TERRAIN3D vec4 rgb = (texture(u_terrain, pos) * 255.0) * u_terrain_unpack; return rgb.r + rgb.g + rgb.b - u_terrain_unpack.a; #else return 0.0; #endif } // calculate the elevation with linear interpolation for a coordinate float get_elevation(vec2 pos) { #ifdef TERRAIN3D vec2 coord = (u_terrain_matrix * vec4(pos, 0.0, 1.0)).xy * u_terrain_dim + 1.0; vec2 f = fract(coord); vec2 c = (floor(coord) + 0.5) / (u_terrain_dim + 2.0); // get the pixel center float d = 1.0 / (u_terrain_dim + 2.0); float tl = ele(c); float tr = ele(c + vec2(d, 0.0)); float bl = ele(c + vec2(0.0, d)); float br = ele(c + vec2(d, d)); float elevation = mix(mix(tl, tr, f.x), mix(bl, br, f.x), f.y); return elevation * u_terrain_exaggeration; #else return 0.0; #endif }