uniform mat4 u_matrix; uniform vec2 u_pixel_coord_upper; uniform vec2 u_pixel_coord_lower; uniform float u_height_factor; uniform vec3 u_scale; uniform float u_vertical_gradient; uniform lowp float u_opacity; uniform vec3 u_lightcolor; uniform lowp vec3 u_lightpos; uniform lowp float u_lightintensity; in vec2 a_pos; in vec4 a_normal_ed; #ifdef TERRAIN3D in vec2 a_centroid; #endif out vec2 v_pos_a; out vec2 v_pos_b; out vec4 v_lighting; #pragma mapbox: define lowp float base #pragma mapbox: define lowp float height #pragma mapbox: define lowp vec4 pattern_from #pragma mapbox: define lowp vec4 pattern_to #pragma mapbox: define lowp float pixel_ratio_from #pragma mapbox: define lowp float pixel_ratio_to void main() { #pragma mapbox: initialize lowp float base #pragma mapbox: initialize lowp float height #pragma mapbox: initialize mediump vec4 pattern_from #pragma mapbox: initialize mediump vec4 pattern_to #pragma mapbox: initialize lowp float pixel_ratio_from #pragma mapbox: initialize lowp float pixel_ratio_to vec2 pattern_tl_a = pattern_from.xy; vec2 pattern_br_a = pattern_from.zw; vec2 pattern_tl_b = pattern_to.xy; vec2 pattern_br_b = pattern_to.zw; float tileRatio = u_scale.x; float fromScale = u_scale.y; float toScale = u_scale.z; vec3 normal = a_normal_ed.xyz; float edgedistance = a_normal_ed.w; vec2 display_size_a = (pattern_br_a - pattern_tl_a) / pixel_ratio_from; vec2 display_size_b = (pattern_br_b - pattern_tl_b) / pixel_ratio_to; #ifdef TERRAIN3D // Raise the "ceiling" of elements by the elevation of the centroid, in meters. float height_terrain3d_offset = get_elevation(a_centroid); // To avoid having buildings "hang above a slope", create a "basement" // by lowering the "floor" of ground-level (and below) elements. // This is in addition to the elevation of the centroid, in meters. float base_terrain3d_offset = height_terrain3d_offset - (base > 0.0 ? 0.0 : 10.0); #else float height_terrain3d_offset = 0.0; float base_terrain3d_offset = 0.0; #endif // Sub-terranian "floors and ceilings" are clamped to ground-level. // 3D Terrain offsets, if applicable, are applied on the result. base = max(0.0, base) + base_terrain3d_offset; height = max(0.0, height) + height_terrain3d_offset; float t = mod(normal.x, 2.0); float z = t > 0.0 ? height : base; gl_Position = u_matrix * vec4(a_pos, z, 1); vec2 pos = normal.x == 1.0 && normal.y == 0.0 && normal.z == 16384.0 ? a_pos // extrusion top : vec2(edgedistance, z * u_height_factor); // extrusion side v_pos_a = get_pattern_pos(u_pixel_coord_upper, u_pixel_coord_lower, fromScale * display_size_a, tileRatio, pos); v_pos_b = get_pattern_pos(u_pixel_coord_upper, u_pixel_coord_lower, toScale * display_size_b, tileRatio, pos); v_lighting = vec4(0.0, 0.0, 0.0, 1.0); float directional = clamp(dot(normal / 16383.0, u_lightpos), 0.0, 1.0); directional = mix((1.0 - u_lightintensity), max((0.5 + u_lightintensity), 1.0), directional); if (normal.y != 0.0) { // This avoids another branching statement, but multiplies by a constant of 0.84 if no vertical gradient, // and otherwise calculates the gradient based on base + height directional *= ( (1.0 - u_vertical_gradient) + (u_vertical_gradient * clamp((t + base) * pow(height / 150.0, 0.5), mix(0.7, 0.98, 1.0 - u_lightintensity), 1.0))); } v_lighting.rgb += clamp(directional * u_lightcolor, mix(vec3(0.0), vec3(0.3), 1.0 - u_lightcolor), vec3(1.0)); v_lighting *= u_opacity; }